منابع مشابه
Calorie Restriction— the SIR2 Connection
A nutritious diet low in calories improves the health and extends the life span of rodents. Recent studies identified a gene, SIR2, which encodes an NAD-dependent deacetylase and may mediate the effects of calorie restriction. In this review, we discuss SIR2 genes and calorie restriction in the lower organisms yeast and Drosophila. We then describe the physiological changes in mammals during ca...
متن کاملSir2 and calorie restriction in yeast: a skeptical perspective.
Activation of Sir2-family proteins in response to calorie restriction (CR) has been proposed as an evolutionarily conserved mechanism for life span extension. This idea has been called into question with the discovery that Sir2-family proteins are not required for life span extension from CR in yeast. We present here a historical perspective and critical evaluation of the model that CR acts thr...
متن کاملSir2-Independent Life Span Extension by Calorie Restriction in Yeast
Calorie restriction slows aging and increases life span in many organisms. In yeast, a mechanistic explanation has been proposed whereby calorie restriction slows aging by activating Sir2. Here we report the identification of a Sir2-independent pathway responsible for a majority of the longevity benefit associated with calorie restriction. Deletion of FOB1 and overexpression of SIR2 have been p...
متن کاملSir2 mediates longevity in the fly through a pathway related to calorie restriction.
Calorie restriction can extend life span in a variety of species including mammals, flies, nematodes, and yeast. Despite the importance of this nearly universal effect, little is understood about the molecular mechanisms that mediate the life-span-extending effect of calorie restriction in metazoans. Sir2 is known to be involved in life span determination and calorie restriction in yeast mother...
متن کاملRequirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae.
Calorie restriction extends life-span in a wide variety of organisms. Although it has been suggested that calorie restriction may work by reducing the levels of reactive oxygen species produced during respiration, the mechanism by which this regimen slows aging is uncertain. Here, we mimicked calorie restriction in yeast by physiological or genetic means and showed a substantial extension in li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cell
سال: 2005
ISSN: 0092-8674
DOI: 10.1016/j.cell.2005.01.029